6 research outputs found

    Enhancing Adversarial Contrastive Learning via Adversarial Invariant Regularization

    Full text link
    Adversarial contrastive learning (ACL) is a technique that enhances standard contrastive learning (SCL) by incorporating adversarial data to learn a robust representation that can withstand adversarial attacks and common corruptions without requiring costly annotations. To improve transferability, the existing work introduced the standard invariant regularization (SIR) to impose style-independence property to SCL, which can exempt the impact of nuisance style factors in the standard representation. However, it is unclear how the style-independence property benefits ACL-learned robust representations. In this paper, we leverage the technique of causal reasoning to interpret the ACL and propose adversarial invariant regularization (AIR) to enforce independence from style factors. We regulate the ACL using both SIR and AIR to output the robust representation. Theoretically, we show that AIR implicitly encourages the representational distance between different views of natural data and their adversarial variants to be independent of style factors. Empirically, our experimental results show that invariant regularization significantly improves the performance of state-of-the-art ACL methods in terms of both standard generalization and robustness on downstream tasks. To the best of our knowledge, we are the first to apply causal reasoning to interpret ACL and develop AIR for enhancing ACL-learned robust representations. Our source code is at https://github.com/GodXuxilie/Enhancing_ACL_via_AIR.Comment: NeurIPS 202

    NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels

    Full text link
    Adversarial training (AT) formulated as the minimax optimization problem can effectively enhance the model's robustness against adversarial attacks. The existing AT methods mainly focused on manipulating the inner maximization for generating quality adversarial variants or manipulating the outer minimization for designing effective learning objectives. However, empirical results of AT always exhibit the robustness at odds with accuracy and the existence of the cross-over mixture problem, which motivates us to study some label randomness for benefiting the AT. First, we thoroughly investigate noisy labels (NLs) injection into AT's inner maximization and outer minimization, respectively and obtain the observations on when NL injection benefits AT. Second, based on the observations, we propose a simple but effective method -- NoiLIn that randomly injects NLs into training data at each training epoch and dynamically increases the NL injection rate once robust overfitting occurs. Empirically, NoiLIn can significantly mitigate the AT's undesirable issue of robust overfitting and even further improve the generalization of the state-of-the-art AT methods. Philosophically, NoiLIn sheds light on a new perspective of learning with NLs: NLs should not always be deemed detrimental, and even in the absence of NLs in the training set, we may consider injecting them deliberately. Codes are available in https://github.com/zjfheart/NoiLIn.Comment: Accepted at Transactions on Machine Learning Research (TMLR) at June 202

    Adversarial Attack and Defense for Non-Parametric Two-Sample Tests

    Full text link
    Non-parametric two-sample tests (TSTs) that judge whether two sets of samples are drawn from the same distribution, have been widely used in the analysis of critical data. People tend to employ TSTs as trusted basic tools and rarely have any doubt about their reliability. This paper systematically uncovers the failure mode of non-parametric TSTs through adversarial attacks and then proposes corresponding defense strategies. First, we theoretically show that an adversary can upper-bound the distributional shift which guarantees the attack's invisibility. Furthermore, we theoretically find that the adversary can also degrade the lower bound of a TST's test power, which enables us to iteratively minimize the test criterion in order to search for adversarial pairs. To enable TST-agnostic attacks, we propose an ensemble attack (EA) framework that jointly minimizes the different types of test criteria. Second, to robustify TSTs, we propose a max-min optimization that iteratively generates adversarial pairs to train the deep kernels. Extensive experiments on both simulated and real-world datasets validate the adversarial vulnerabilities of non-parametric TSTs and the effectiveness of our proposed defense. Source code is available at https://github.com/GodXuxilie/Robust-TST.git.Comment: Accepted by ICML 202

    Efficient Adversarial Contrastive Learning via Robustness-Aware Coreset Selection

    Full text link
    Adversarial contrastive learning (ACL) does not require expensive data annotations but outputs a robust representation that withstands adversarial attacks and also generalizes to a wide range of downstream tasks. However, ACL needs tremendous running time to generate the adversarial variants of all training data, which limits its scalability to large datasets. To speed up ACL, this paper proposes a robustness-aware coreset selection (RCS) method. RCS does not require label information and searches for an informative subset that minimizes a representational divergence, which is the distance of the representation between natural data and their virtual adversarial variants. The vanilla solution of RCS via traversing all possible subsets is computationally prohibitive. Therefore, we theoretically transform RCS into a surrogate problem of submodular maximization, of which the greedy search is an efficient solution with an optimality guarantee for the original problem. Empirically, our comprehensive results corroborate that RCS can speed up ACL by a large margin without significantly hurting the robustness transferability. Notably, to the best of our knowledge, we are the first to conduct ACL efficiently on the large-scale ImageNet-1K dataset to obtain an effective robust representation via RCS
    corecore